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A procedure for an automated measurement of song similarity
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Assessment of vocal imitation requires a widely accepted way of describing and measuring any similarities
between the song of a tutor and that of its pupil. Quantifying the similarity between two songs, however,
can be difficult and fraught with subjective bias. We present a fully automated procedure that measures
parametrically the similarity between songs. We tested its performance on a large database of zebra finch,
Taeniopygia guttata, songs. The procedure was an analytical framework of modern spectral analysis to
characterize the acoustic structure of a song. This analysis provides a superior sound spectrogram that is
then reduced to a set of simple acoustic features. Based on these features, the procedure detects similar
sections between songs automatically. In addition, the procedure can be used to examine: (1) imitation
accuracy across acoustic features; (2) song development; (3) the effect of brain lesions on specific song
features; and (4) variability across different renditions of a song or a call produced by the same individual,
across individuals and across populations. By making the procedure available we hope to promote the
adoption of a standard, automated method for measuring similarity between songs or calls.
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All true songbirds (order Passeriformes, suborder Oscines)
are thought to develop their song by reference to auditory
information (Kroodsma 1982). This can take the form of
improvisation or imitation (Thorpe 1958; Marler &
Tamura 1964; Immelmann 1969); both phenomena con-
stitute examples of vocal learning because in both cases
vocal development is guided by auditory feedback (Koni-
shi 1965; Nottebohm 1968). Once sound-spectrographic
analysis became available for the visual inspection of
avian sounds (Thorpe 1954), the accuracy of vocal imita-
tion among oscine songbirds became a focus of scientific
interest. Some researchers were particularly interested in
the choice of model or in the timing of model acquisi-
tion, others in the social context in which imitation
occurred or in the brain mechanisms involved. All these
approaches require a widely accepted way of describing
and measuring the similarities that might exist between
the song of a tutor and that of its pupil. Yet, quantifying
the similarity between two songs (or calls) can be difficult
and fraught with subjective bias. Most efforts at scoring
song or call similarity have relied on visual inspection of
sound spectrographs.

Visual scoring of song similarity can be made easier by
partitioning the songs into ’syllables’ or ‘notes’, defined
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as continuous sounds preceded and followed by silent
intervals or by abrupt changes in frequency. The next step
is to find for each of the notes of the tutor’s song the best
match in the pupil’s song. According to the accuracy of
this match, the pupil’s note is assigned a numeric score.
In two recent studies that used this procedure, notes for
which there was a close match received a high score,
those for which the match was poor or nonexistent
received a low score and only notes that received high
scores were said to be imitated (Scharff & Nottebohm
1991; Tchernichovski & Nottebohm 1998). It should be
emphasized that imitation is always inferential and based
on sound similarity as well as on other information.
Clearly, the above scoring of similarity was done without
the benefit of an explicit metric and the criteria for
scoring similarity were arbitrary and idiosyncratic. None
the less, despite these limitations, the visual approach to
scoring similarity made good use of the human eye and
brain to recognize patterns. This approach was satisfac-
tory for studies aimed at establishing which songs are
imitated, when model acquisition occurs, when imitation
is achieved and how much of a model is learned
(reviewed in Kroodsma 1982; Catchpole & Slater 1995;
Zann 1996). However, song is a multidimensional phe-
nomenon and this method is unsuitable for evaluating
the components of similarity in a quantitative manner. A
quantitative, automated scoring of similarity based on a
 2000 The Association for the Study of Animal Behaviour
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clear rationale and well-defined acoustic features would
not only improve the quality of our measurements but
also facilitate comparisons between results obtained by
different laboratories.

Previous attempts to automate the analysis of song
similarity have not gained general acceptance. Clark et al.
(1987) suggested a sound-spectrographic cross-correlation
as a way to measure the similarity between song notes:
correlation between the spectrograms of the two notes
was examined by sliding one note on top of the other and
choosing the best match (the correlation peak). This
method was later used for studying intraspecific variation
of song learning in white-crowned sparrows, Zonotrichia
leucophrys (Nelson et al. 1995). However, measures based
on the full spectrogram suffer from a fundamental prob-
lem: the high dimensionality of the basic features. Cross-
correlations between songs can be useful if the song is
first partitioned into its notes and if the notes compared
are simple, but even in this case mismatching a single
feature can reduce the correlation to baseline level. For
example, a moderate difference between the fundamental
frequencies of two complex sounds that are otherwise
very similar would prevent us from overlapping their
spectrograms.

The cross-correlation approach, as mentioned above,
requires, as a first step, that the song be partitioned into
its component notes or syllables. This, in itself, can be a
problem. Partitioning a song into syllables or notes is
relatively straightforward in a song such as that of the
canary, Serinus canaria (Nottebohm & Nottebohm 1978),
in which syllables are always preceded and followed by a
silent interval. Partitioning a song into syllables is more
difficult in the zebra finch, Taeniopygia guttata, whose
song includes many changes in frequency modulation
and in which diverse sounds often follow each other
without intervening silent intervals. Thus, the problems
of partitioning sounds into their component notes and
then dealing with the complex acoustic structure of these
notes compound each other. In the present study we
describe a procedure that addresses both of the above
difficulties. It achieves this by reducing complex sounds
to an array of simple features and by implementing an
algorithm that does not require that a song be partitioned
into its component notes.

Our approach is not the first one to grapple with these
problems. Nowicki & Nelson (1990) first suggested an
analytical approach to song comparisons using a set of 14
acoustic features for categorizing note types in the black-
capped chickadee, Poecile atricapillus. Here too, partition-
ing of the song into its component notes was required
although this method was not used to score the overall
similarity between the songs of two birds. A similar
analytical approach to the characterization of sounds was
also used for bat communication calls, in a study that
searched for neuronal correlates of different acoustic
features (Kanwal et al. 1994; Esser et al. 1997). Recently,
new techniques have been introduced for automatically
partitioning a song into its component parts (notes,
chunks or motifs). Kogan & Margoliash (1998) applied
techniques borrowed from automated speech recognition
for recognizing and categorizing these song parts. They
demonstrated that these techniques work well for
automated recognition of song units in the zebra finch
and in the indigo buntings, Passerina cyanea. A robust
automatic categorization of units of vocalization is an
important step towards an objective scoring of similarity;
however, the problem of scoring song similarity was not
addressed.

To solve this latter problem, Ho et al. (1998) developed
an analytical framework for the automated characteriza-
tion of the vocalizations of a songbird. Their approach is
based upon a robust spectral analysis technique that
identifies those acoustic features that have good articula-
tory correlates, based on in vitro observations and theo-
retical modelling of sound production in an isolated
syrinx (Fee et al. 1998). The acoustic features that Ho et al.
(1998) chose to characterize zebra finch song are repre-
sented by a set of simple, unidimensional measures
designed to summarize the multidimensional informa-
tion present in a spectrogram. A procedure for scoring
similarity, based on such an analytic framework has two
advantages. (1) It enables the examination of one acoustic
feature at a time, instead of having to cope with the entire
complexity of the song of two birds. A distributed and
then integrated assessment of similarity across different
features promotes stability of scoring. (2) It also has the
potential to evaluate how each of the chosen features
emerges during development and is affected by different
experimental manipulations.

The automated procedure we present here is based on
the analytical approach suggested by Ho et al. (1998). We
tested this procedure on a large database of zebra finch
songs, including the songs of pairs of birds known to have
had a tutor–pupil relation. The formal description of the
song features that we measured, the spectral analysis
techniques used and the rationale for using them appear
in Ho et al. (1998). We describe the new technique in a
manner that, we hope, will be useful and accessible to
biologists. We then present the computational frame of
our procedure and focus on the meaning and the limita-
tions of the computational steps. Finally, we test the
procedure and present a few examples that demonstrate
its power. We have incorporated the procedure (including
all the graphical tools presented in this article) into a
user-friendly Microsoft Windows� application, available
at no charge for purposes of studying animal communi-
cation (excluding human) from O. Tchernichovski. We
are aware that our procedure is sensitive to the nature of
the sounds compared; researchers that wish to use it may
have to modify it to maximize its usefulness in species
whose sounds are very different from those of the zebra
finch. However, we hope that our program will promote
the adoption of an automated standard for measuring
vocal imitation in birds.
METHODS
Song Recording

We recorded female-directed songs (Morris 1954;
reviewed in Jarvis et al. 1998) in a soundproof room. A
female and a male were placed in two adjacent cages. An
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omnidirectional Shure� 33-1070C microphone was
placed just below the perch used by the female so that the
male sang facing the microphone. Songs were digitally
recorded using Goldwave� sound recorder software at a
frequency of 44 100 Hz and at an accuracy of 16 bits.
Glossary of Terms and Units of Analysis

The following terms characterize the kinds of spectral
analysis done by our algorithm and thus allow us to
calculate the four sound features that we used to quantify
song similarity.
Song notes
A song note is a continuous sound (Price 1979; Cynx

1990) bordered by either a silent interval or an abrupt
transition from one frequency pattern (e.g. a stack of
harmonically related frequencies) to a different one (e.g. a
frequency vibrato or a pure tone).
Song motifs
A song motif is composed of dissimilar notes repeated

in fixed order.
Fourier transformation
Fourier transformation (FT) transforms a short

segment of sound to the frequency domain. The FT is
implemented algorithmically using the fast Fourier
transformation technique (FFT).
Time window
The time window is the duration of the segment of

sound upon which FFT is performed, in our case 7 ms.
The time window determines both time and frequency
resolution of the analysis. In this study 307 samples of
sound pressure were obtained during the 7-ms period,
which corresponds to a frequency resolution of 287 Hz.
The next window starts 1.4 ms after the beginning of the
previous one and therefore has an 80% overlap. The
spectrogram is a sequence of spectra computed on such
windows, typically represented as an image where power
is represented on a scale of grey ranging from white to
black. Because frequency resolution is finite, the spectro-
gram does not capture a ‘pure sine wave’ but represents
‘frequency’ as a ‘trace’. The width of this trace is, in our
case, 287 Hz.
Multitaper spectral analysis
Multitaper (MT) methods are a framework for perform-

ing spectral analysis (Thomson 1982). In particular, they
produce spectral estimates that are similar but superior to
the traditional spectrogram. Multitaper methods also pro-
vide robust estimates of derivatives of the spectrogram as
well as a framework for performing harmonic analysis
(detection of sine waves in a broadband noisy back-
ground). This technique is described in Percival &
Walden (1993).
Spectral derivatives
Spectral derivatives are derivatives of the spectrogram

in an appropriate direction in the time–frequency plane.
These derivatives can be estimated using MT spectral
methods (Thomson 1990, 1993). The derivatives have the
same resolution as the spectrogram and are not artificially
broadened. Here we use them for tracking frequency
traces in the spectrogram. As one cuts across a horizontal
frequency trace, from low to high, there is a sharp
increase in power, then a plateau, then a decrease in
power. The frequency derivatives for the same cut are first
positive and then negative, passing through zero at the
peak power location. A useful property of these deriva-
tives is that they show a sharp transition from positive to
negative values, providing a contour that is more accu-
rately defined than the frequency trace. If the frequency
trace is not horizontal, then the direction of maximum
change in power is not in the frequency axis, but rather at
an angle to both time and frequency axes. To capture the
direction of maximal power change in the frequency
trace, it is then natural to take a directional derivative
perpendicular to the direction of frequency modulation.
The directional derivative is easily computed as a linear
combination of the derivatives in the time and frequency
directions, and may be thought of as an edge detector in
the time–frequency plane. We find the derivatives spec-
trogram an excellent means of visualizing the spectral
information in a song.

We illustrate the above procedure in Fig. 1 using two
examples. Figure 1a presents an MT spectrogram of a
note, and Fig. 1b presents the directional time–frequency
derivatives of the same note. The arrows below the time
axis in Fig. 1 indicate the angle of the derivatives. As
shown, this angle is perpendicular to the direction of
frequency modulation. As a result of this edge detector
technique, zero crossings (transitions from black to white
in the middle of frequency traces) are equally sharp in the
modulated and in the unmodulated portions of a note.
Peak frequency contours
Peak frequency contour is defined by the zero crossings

of successive directional derivatives. Figure 1c presents
the frequency contours as red lines and this constitutes a
parametric representation of the sound analysed. It con-
tains less information than the original sound but this
information can be analysed more readily. By simplifying
the song to a series of frequency contours we have
excluded all information about absolute power. So, for
example, the representation of the note with many har-
monics shown in Fig. 1c shows all harmonics with equal
emphasis, although it is clear from Fig. 1a that some
harmonics were louder than others.
Features Used to Characterize and Compare
Songs
Wiener entropy
Wiener entropy is a measure of randomness that can be

applied to sounds (Ho et al. 1998), as shown in Figs 2a
and 3a. It is a pure number, that is, it is unitless. On a
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scale of 0–1, white noise has an entropy value of 1 and
complete order; for example, a pure tone has an entropy
value of 0. To expand the dynamic range, the Wiener
entropy is measured on a logarithmic scale from 0 to
minus infinity (white noise: log(1)=0; complete order:
log(0)=minus infinity). The Wiener entropy of a multi-
harmonic sound depends on the distribution of the
power spectrum: if narrow (the extreme of which is a pure
tone), the Wiener entropy approaches minus infinity; if
broad, it approaches zero. The amplitude of the sound
does not affect its Wiener entropy value, which remains
virtually unchanged when the distance between the bird
and the microphone fluctuates during recording. Yet, the
entropy time series (or curve) of a song motif is negatively
correlated with its amplitude time series. This is because
noisy sounds tend to have less energy than tonal sounds.
A similar phenomenon has also been observed in
human speech, where unvoiced phonemes have low
amplitude. Wiener entropy may also correlate with the
dynamic state of the syringeal sound generator, which
shifts between harmonic vibrations and chaotic states
(Fee et al. 1998). Such transitions may be among the most
primitive features of song production and maybe of song
imitation.
Figure 1. Computation of spectral derivatives and frequency contours of a note (example 2) and a song chunk (example 3). (a) Multitaper
sound spectrograph improves the definition of frequencies. This technique allows us to approximate the spectral derivatives as shown in (b),
where the light areas represent an increase of power, and the dark areas, a decrease of power. The arrows below the X axis in (b) indicate the
direction of the derivatives presented. We chose the direction that maximizes the derivatives and hence the sharp transition between white
and black at the middle of each frequency trace. This allows us to accurately locate frequency peaks of modulated and unmodulated
frequencies as shown in (c). The red lines in (d) correspond to continuous frequency contours and the grey lines indicate discontinuous
contours. Spectral derivatives are used in the analysis of pitch, frequency modulation and spectral continuity.
Spectral continuity
Spectral continuity estimates the continuity of fre-

quency contours across time windows, as illustrated in
Figs 1d, 2b, 3b. Frequency contours are mostly continu-
ous in example 1 shown in Fig. 1d, but not in the more
complex set of notes in example 2. It is clear from Fig. 1d
that the noisier a sound, the lower its spectral continuity
score and the higher its Wiener entropy. Importantly,
although both measures are related to ‘noise’, they are
measured orthogonally to each other: Wiener entropy is
measured on the Y axis, spectral continuity is measured
on X axis. Although at their extremes, Wiener entropy
and spectral continuity are correlated, there is a broad
middle range in these two measures where one does not
predict the other. For example, adding more and more
harmonics to a sound would not change spectral
continuity but would increase Wiener entropy value.
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Continuity is defined according to the time and fre-
quency resolution of the analysis. Sounds are examined
across a grid of time and frequency pixels (each pixel
1.4 ms�43 Hz). If a contour continues across five con-
secutive pixels (pixels that have at least one common
corner), it crosses a section of 7 ms�215 Hz, approxi-
mately the resolution of analysis, and is defined as con-
tinuous. A consecutive pixel can belong to the next
consecutive time window or to the same window, but not
to the previous window. On a scale of 0–1, continuity is 1
when all the frequency contours of a time window are
continuous and 0 when none of the contours is continu-
ous. Figure 3b presents examples of the continuity
measurement.
Feature
expression

(a) Wiener
     entropy

(b) Spectral
     continuity

(c) Pitch (d) Frequency
     modulation

High

Low

Figure 2. (a) Wiener entropy (a measure of randomness) is high when the waveform is random, and low when the waveform is of pure tone.
(b) The spectral continuity value is high when the contours are long and low when the contours are short. (c) Pitch is a measure of the period
of the sound and its value is high when the period is short and low when the period is long. (d) Frequency modulation is a measure of the
mean slope of frequency contours.
Figure 3. Values, in red, are presented for each of the four features in two examples of song chunks. The grey traces correspond to the time
frequency of the sounds represented. Each sound has a unique combination of feature values. Note that values of different features may show
independent changes (compare for example the curves of pitch and frequency modulation in example 2).
Pitch
Pitch is determined by the period of a sound (Fig. 2c)

and is a very important song feature. It is not always easy
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to measure pitch. In the simplest situation, that of a pure
tone, the frequency of this tone is its pitch. In sounds
with many harmonics, pitch is the fundamental fre-
quency, as defined by the separation between successive
harmonics, and the median difference between consecu-
tive frequency contours is our estimate of harmonic
pitch. However, several situations can occur that require
an explanation. In some cases, a harmonic contour in a
stack of harmonics has been suppressed; this is rarely a
problem because unless there are many missing harmon-
ics the median measure remains unchanged. In addition,
noisy sounds that do not offer clear stacks of harmonics
(e.g. example 2 in Fig. 1d) can also occur. Careful inspec-
tion, however, reveals that there is an embedded structure
of frequency contours that, for any time window, tends to
show a periodic relation; in this case as well, the median
gives a robust estimate of this embedded periodic rela-
tion. Figure 3c shows examples of pitch measures in the
two above situations. The sound in Fig. 3c, example 2 is
the same one as in Fig. 1, example 2. The third situation,
and the most troublesome, is when the frequency con-
tours in a same harmonic stack include more than one
family of harmonics, suggesting two independent sound
sources. In this case the median difference between suc-
cessive frequency contours is not an ideal solution. It
would be useful to have an algorithm that distinguished
between single- and double-source sounds and treated
each source separately, but ours does not do this. Sounds
in which two separate sound sources can be inferred from
the simultaneous occurrence of at least two families of
unrelated harmonics are probably relatively rare in adult
zebra finch song, but we have not seen a quantitative
estimate of their incidence.
Frequency modulation
Frequency modulation is computed as described above

for spectral derivatives (also see Fig. 3d). It is defined as
the angle of the directional derivatives as shown in
Fig. 2d.
RESULTS
The Computational Frame
The problem of defining song units
A zebra finch song motif consists of discrete notes that

are often imitated in chunks of variable size (Williams &
Staples 1992). Partitioning a motif into its component
notes would seem, therefore, the obvious first step for
scoring imitation. However, pupils can transform ele-
ments of a tutor’s song in many different ways: they can
merge and split notes or modify them in such a way that
sharp transitions of frequency structure are replaced by a
smooth transition and so forth. For an automatic pro-
cedure, recognizing homologous notes can be very diffi-
cult. Yet, if a note-based procedure fails to recognize such
transformations it may, as a result, underestimate the
similarity between two songs. We chose, therefore, to
avoid any partitioning of the song motif into component
‘notes’. Instead, we examined each time window for
similarity, throughout the songs, omitting silent inter-
vals. This approach allowed us to detect discrete ‘seg-
ments of imitation’ that typically emerge from the
analysis. The technique of extracting a similarity score
from a set of features that vary in time is described below
and summarized as a sequence of steps in the Appendix.
Integration of the Song Measures

Each time window of a tutor’s song is represented by
measurements of four features: Wiener entropy, spectral
continuity, pitch and frequency modulation. Each of
these features has different units and different statistical
distributions in the population of songs studied. To arrive
at an overall score of similarity, we transformed the units
for each feature to a common type of unit that could be
added. One can transform the units of pitch, for example,
from Hertz to units of statistical distances. In a certain
population of songs, two measurements of pitch may be 3
standard deviations away from each other and so forth
(although in practice, we did not use units of SD but
‘median absolute deviation’ from the mean). These nor-
malized measures can then be integrated (see Appendix).
We scaled measures based on their distribution in a
sample of 10 different songs. Because the distribution of
features may vary between populations (e.g. pitch is
distributed differently in wild and domestic zebra finches;
Zann 1996), a new normalization may be desirable before
starting on new material to prevent a distortion of
comparisons or an unintended change of a measure’s
weight.
A Method for Reducing Scoring Ambiguity

For the sake of simplicity, we demonstrate how one
measure, pitch, performs when comparing an artificial
tutor–pupil pair of songs that show perfect similarity.
First we singled out a particular time window of the
‘tutor’s’ song and compared its measures to those of each
window in the ‘pupil’s’ song. Ideally, there would be only
one good match in the pupil’s song. We repeated this
procedure for each window of the tutor’s song (see Fig.
4a). The resulting matrix spans all possible combinations
of pairs of ‘tutor’ and ‘pupil’ windows. The difference in
pitch between each pair of windows is encoded into a
colour scale. In this case there is a marked tendency for
the strongest similarity between pairs of windows to show
as a red diagonal line. In practice, however, similar pitch
values are seldom restricted to a unique pair of windows
of the tutor and pupil’s song. Different windows often
share similar patterns of power spectrum. Therefore, even
when all four measures are taken into account, there are
likely to be several windows in the pupil’s song that show
close similarity to a specific window of the tutor’s song.
Therefore, scoring similarity between songs on the scale
of a single window is hopeless, as is comparing pictures
one pixel at a time.

The solution is to compare intervals consisting of sev-
eral windows. If such intervals are sufficiently long, they
will contain enough information to identify a unique
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song segment. Yet, if the intervals are too long, simi-
larities that are real at a smaller interval size may be
rejected and that would reduce the power of analysis. We
found empirically that comparisons using 50-ms inter-
vals, centred on each 7-ms time window were satisfactory.
Perhaps not surprisingly, the duration of these song
intervals is on the order of magnitude of a typical song
note. Figure 4b–c illustrates this approach, in this case for
measures of Wiener entropy. This time, we compared the
song of a father to the song of his son. The two birds were
kept together until the son reached adulthood. Figure 4b
presents the similarity of Wiener entropy values between
7-ms windows of the father and the son’s songs. As
expected, the result was ambiguous. Figure 4c presents
the similarity of Wiener entropy values, this time
between 50-ms intervals of the same songs. As indicated
by the diagonal red line, narrowing the definition of the
similarity measurement eliminates most of the ambigu-
ity. Measuring similarity in 50-ms intervals across all four
measures (Fig. 4d) was in this case sufficient for identify-
ing a unique diagonal line, which reflects that the two
songs being compared were very similar. Our final score
of similarity combined the two scales: the ‘large scale’
(50 ms) is used for reducing ambiguity, while the
‘small scale’ (7 ms) is used to obtain a fine-grained
quantification of similarity (see below).
Figure 4. Similarity measure improves as comparisons include longer intervals and more features. (a) Similarity matrix between identical,
artificial sounds. Because each of these simple sounds has a unique pitch, the similarity matrix shows high similarity values (indicated in red)
across the diagonal and low values elsewhere. Comparing complex sounds would rarely give such result. As shown in (b), although the songs
are similar, high similarity of Wiener entropy values are scattered. (c) Ambiguity is reduced when we compare Wiener entropy curves between
50-ms intervals. (d) A combined similarity matrix between 50-ms intervals across features. High similarity values are now restricted to the
diagonal, indicating that each of the notes of the father’s song was imitated by his son in a sequential order. Similarity scale: 0–70% (black),
71–80% (blue), 81–90% (yellow), 91–100% (red). The coloured curves overlaying the time–frequency derivative in (d) correspond to spectral
continuity, pitch and frequency modulation (see colour code).
Setting a similarity threshold
We compared windows and their surrounding intervals

(the large, 50-ms scale) in the tutor’s song with windows
and their surrounding intervals in the pupil’s song. We
accepted the hypothesis of similarity between the two
windows when a critical ‘similarity threshold’ was met.
Setting the threshold for this decision was critical,
because of the danger of making false rejections. A posi-
tive decision at this stage is not final, because it does not
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guarantee that the two sounds compared offer the best
possible match. The final step in the procedure involves
choosing the best match from all possible alternatives, as
explained below.

We took a statistical approach to our setting of the
similarity threshold. We recorded songs from 20 unre-
lated zebra finches from our colonies at the Field Research
Center and paired them randomly. We then compared all
50-ms time windows in one song with all of the 50-ms
windows in the other song and calculated the distribu-
tion of similarity values of the entire sample. We used this
statistical distribution to arrive at a probability curve that
assigns a probability value for each measured difference
between two 50-ms intervals. We set a threshold that
would accept only similarity values that were likely to
occur by chance alone with a probability equal to or
lower than 1%. The selection of this P value for a simi-
larity threshold can be tailored to the needs of a particular
study. For example, a more liberal similarity threshold is
required when searching for the first evidence of simi-
larity between the emerging song of a juvenile and its
putative tutor. As mentioned earlier, although our ‘categ-
orical decision’ to label two sounds as ‘similar’ is based on
‘large-scale’ similarity, the actual similarity value is based
only on the ‘small-scale’ similarity.
The final similarity score
For each pair of time windows labelled as ‘similar’ for

two songs being compared, we calculated the probability
that the goodness of the match would have occurred by
chance as described above. We are left, then, with a series
of P values, and the lower the P, the higher the similarity.
For convenience we transform these P values to 1-P;
therefore, a 99% similarity between a pair of windows
means that the probability that the goodness of the
match would have occurred by chance is less than 1%. In
this case, 99% similarity does not mean that the features
in the two songs being compared are 99% similar to each
other. In practice and because of how our thresholds were
set, songs or sections of songs that get a score of 99%
similarity tend, in fact, to be very similar.

Our procedure requires that there be a unique relation
between a time window in the model and a time window
in the pupil. Yet, our technique allows that more than
one window in the pupil song will meet the similarity
threshold. The probability of finding one or more pairs of
sounds that meet this threshold increases with the
number of comparisons made and so, in some species at
least, the duration of the pupil’s song will influence the
outcome. When a window in a tutor’s song is similar to
more than one window in the pupil’s song, the problem
is how to retain only one pair of windows. Two types of
observations helped us make this final selection: the first
is the magnitude of similarity, the second one is the
length of the section that met the similarity criterion.
Windows with scores that meet the similarity threshold
are often contiguous to each other and characterize dis-
crete ‘sections’ of the song. In cases of good imitation,
sections of similarity are interrupted only by silent inter-
vals, where similarity is undefined. Depending on the
species, a long section of sequentially similar windows
(i.e. serial sounds similar in the two songs compared) is
very unlikely to occur by chance, and thus the sequential
similarity we observed in zebra finches was likely the
result of imitation. Taken together, the longer the section
of similarity and the higher the overall similarity score of
its windows, the lower the likelihood of this having
occurred by chance. Therefore, as described below, the
overall similarity that a section captures has preeminence
over the local similarity between time windows.

To calculate how much similarity each section captured
we used the following procedure. Consider for example, a
tutor’s song of 1000 ms of sound (i.e. excluding silent
intervals) that has a similarity section of 100 ms with the
song of its pupil, and the average similarity score between
windows of that section is 80%. The overall similarity
that this section captures is therefore:

80%�100 ms/1000 ms=8%.

We repeated the procedure for all sections of similarity.
Then, we discarded parts of sections that showed overlap-
ping projections, either on the tutor or on the pupil’s
song (see Fig. 5). Starting from the section that received
the highest overall similarity score (the product of
similarity�duration, as shown above), we accepted its
similarity score as final and removed overlapping parts in
other sections. We based the latter decision on the overall
similarity of each section and not on the relative simi-
larity of their overlapping parts. We repeated this process
down the scoring hierarchy until all redundancy was
removed. The remainder was retained for our final score
of similarity.

We demonstrate the results of this procedure for excel-
lent song imitation (Fig. 5a), partial imitation (Fig. 5b)
and unrelated songs (Fig. 5c).
Testing the procedure
Figure 6a presents the similarity scores of songs pro-

duced by birds that were housed as juveniles singly with
their father, a condition that promotes accurate imitation
(Tchernichovski & Nottebohm 1998). For comparison, we
scored similarity between the songs of birds that were
raised in different breeding rooms of our colony. As
shown, similarity scores were much higher when compar-
ing the songs of a tutor and its pupil than when compar-
ing the songs of two randomly chosen individuals. We
next wanted to determine whether the procedure could
detect subtle differences in the completeness of an imita-
tion. For this we used the effect of fraternal inhibition
(Tchernichovski & Nottebohm 1998): when several
pupils are kept together with a single tutor, imitation
completeness is reduced in some pupils but not in others.
Because this effect works even when pupils are kept in
separate cages, we constructed an arena of 10 cages
around a central cage as shown in Fig. 6b. We placed an
adult tutor in the middle cage, and in each of the 10
peripheral cages we placed a single 30-day-old pupil that
had not been exposed to male zebra finch song from day
10 onwards. The 10 pupils and the tutor were kept in the
arena until the pupils were 100 days old, at which time
we recorded the songs of the tutor and the pupils. A
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human then scored, as in Tchernichovski & Nottebohm
(1998), the percentage of the tutor notes for which the
pupils produced a close match. The results of the human
scores are presented in Fig. 6b. As expected, imitation was
highly variable. Figure 6c presents the correlation
between the human (visually guided) score and auto-
mated scores of similarity. As shown, the correlation was
high (r=0.91).

Our measurements suggest that in many cases the
automated procedure makes similar decisions to those
made by a human observer. In addition, we gain analytic
power to ask questions that might have been difficult to
answer without the procedure. For example, in the exper-
iment represented in Fig. 6b, the similarity between tutor
and pupil for each of the 10 birds was closely paralleled
by the duration of each pupil’s song. That is, a pupil that
got a score of 55% had a song that was approximately
55% as long as that of the tutor (Tchernichovski &
Nottebohm 1998). Apparently, the difference in com-
pleteness of imitation was explained by how many notes
were present in the pupil’s song. We then used our
procedure to determine whether the quality of imitation
for each of the notes sung was related to the completeness
of imitation. In this case, incompleteness of imitation was
not correlated with accuracy of imitation (r<0.1). Thus,
for those notes sung, the match with the tutor’s notes was
equally good whether just a few or all of the notes were
imitated.
Figure 5. Similarity scores for three pairs of tutor–pupil songs. Each pair shows a different degree of similarity. The grey traces in the black
panel represent sections of similarity that met the similarity threshold but were rejected in the final analysis. These sections of similarity were
rejected because their projections on either the tutor’s or the pupil’s song overlapped with sections of higher similarity. The similarity values
of sections that passed this final selection are encoded into colour code as in Fig. 4, where similarity is measured on a small scale, across time
windows. The thin, blue lines connect the beginning and end of corresponding sections of similarity.
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Figure 6. (a) Song similarity scores computed by the automated procedure in cases of tutor–pupil pairs and in random pairs. (b) Ten pupils
were kept singly in 10 cages as shown. The tutor was kept in the central cage. Human similarity scores are presented for each pupil. (c) The
correlation between human and automated procedure scores for the 10 pupils shown in (b) (r=0.91, P<0.01).
Performances of the procedure

The software is relatively easy to master. To compare
two sounds, a user must first digitize the sounds and store
them in a data file. The software will then extract features
from the two songs (a process that takes approximately
3 s of analysis per 1 s of sound analysed, using a 500-MHz
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Pentium PC). The user can then outline the correspond-
ing parts of the songs for which a similarity score is
desired (e.g. the whole song or parts thereof). Scoring
similarity between a pair of songs that each last 1 s, takes
about 10 s; for a pair of 2-s songs, scoring will take
approximately 40 s, and so forth. Only the memory
resources of the computer limit the overall duration of
the comparison.

Our procedure can also be used to enhance, rather than
replace visual inspection. It allows the user to alternate
between different representations of the sound: sona-
gram, spectral derivatives and frequency contours (as in
Fig. 1). The user can outline each note and type com-
ments, while the software generates a data file that
transparently combines the visual inspection with a
summary of the objective features of each note.
DISCUSSION

We presented a procedure that uses four simple, unidi-
mensional acoustic features to measure the similarity
between two sounds. The measurements for each of the
features are integrated into a global similarity score. Thus,
one of the more novel aspects of this new approach to
score similarity in natural sounds is that it has an explicit
and reliable metric. Even subtle differences between
sounds can be quantified and compared, and it is possible
to track, in quantitative terms, the small daily changes
that occur during song development.

Our initial motivation for developing our procedure
was the need to have an easy, reliable and fast method to
score song imitation. However, the procedure also may be
used for scoring similarity between unlearned sounds.
The measures provided by the procedure allow for a
standardization that will also make it easier to describe
signal variability during development, in adulthood and
between members of a population. Such a measure has
been lacking in studies of development as well as in
studies examining the consequence of various hormonal
or neurological interventions. We chose the features
because those features are thought to bear a close relation
to the articulatory variables involved in sound produc-
tion (Ho et al. 1998).

Our algorithm for measuring the similarity between
songs used several parameter values that can be altered
without changing the conceptual framework. The soft-
ware that is available allows for changing these parameter
values. We are aware that the parameters used will be
determined, to some extent, by the properties of the
sounds compared and by the nature of the questions
asked. Similarly, the weight assigned to each sound fea-
ture and its contribution to the final index of similarity
can be altered. In the current report, we gave equal weight
to measures from all four features analysed, but this need
not be so. We also used an arbitrary criterion for deciding
what was the ‘similarity threshold’, which also can be
modified. Fine tuning of the algorithm will reflect not
just the properties of the sounds compared and the
questions asked but, in time, will also reflect the experi-
ence of many users. But even if the parameter values that
we used are proven to be suboptimal, they are stated and
have a quantitative reality. To this extent, they differ
from the unstated and unexplainable idiosynchracies
that have often permeated our way of talking about
similarities between animal vocalizations. But even with
these limitations, we hope that others will find our
approach useful for scoring the similarity between animal
sounds. This, in turn, should allow for a more rigorous
and quantitative approach to the study of vocal learning,
vocal imitation and vocal communication.
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windows in pupil’s song. For a pair of windows a and b of
a tutor and pupil’s song, respectively, our estimate of the
small-scale distance (Ds) between the two sounds is the
Euclidean distance between the scaled sound features
f1,f2, . . ., fn, namely:

Specifically for our four features: pitch (p), frequency
modulation (FM), Weiner entropy (W) and spectral con-
tinuity (C):

and the matrix L is defined as

Li,j=Ds(i,j)=1 . . . M, j=1 . . . N

4. Compute long scale distances across (say, 50 ms)
intervals of several time windows. Let G (M�N) be a
rectangular matrix where M is the number of intervals in
tutor’s song and N is the number of intervals in pupil’s
song. Each interval is composed of a sequence of T time
windows, each centred on the corresponding window in
the L matrix (edge effects are neglected). Our estimate of
the large-scale distance (Dl) between the two sounds is the
mean Euclidean distance between features of correspond-
ing time windows within the intervals. For two intervals
A and B of a tutor and pupil’s song, respectively, consist-
ing of time windows At, Bt (t=1 . . . T)

and the matrix G is defined as

Gi,j=Dl(i,j) i=1 . . . M, j=1 . . . N

Note that Dl (A, B) is sensitive to the order of time
windows within each interval. That is, features are com-
pared only across time windows of the same sequential
order.

5. Transformation of the entries of the matrices L and
G from Euclidean distances to P values: based on the
distribution of Ds and Dl across 10 unrelated songs, plot
mputational steps to construct a similarity score
tween songs starting from a set of one-dimensional
atures time series

1. Obtain the distribution of each feature in a sample
n different songs (say N=10). Scale the units of each

ature to the absolute median difference from its mean.
2. Measure sound features for every time window of
tor and pupil’s songs and scale them.
3. Compute short-scale Euclidean distances across time
indows of tutor and pupil’s songs. Let L (M�N) be a
ctangular matrix where M is the number of time win-
ws in tutor’s song and N is the number of time

the cumulative distributions of Ds and Dl and use the
plots to transform Euclidean distances to P values, P(Gi,j)
and P(Li,j).

6. Setting a threshold for rejection of similarity hypoth-
esis. Construct a matrix S of similarities as follows:

that is,

Si,j=[1�P(Lij)]�{PTh�P(Gij)}



where PTh=0.01 is the threshold probability. Note that
large-scale P values are used for the threshold, but when
the similarity hypothesis is accepted, the small-scale P
values of the local matrix L are used for estimating its
magnitude. For convenience we transform these P values
to 1�P so that a high P value now refers to a high
similarity and vice versa.

7. Define continuous sections of similarity by grouping
each pair of cells Si,j, Sk,i that fulfil the following
conditions:

abs(i�k)�1, abs(j�l)�1, Sij>0, Sk,l>0

that is, we group neighbouring cells of significant simi-
larity value. We now have a series of sections, each
represented by two features: its dimensions and its partial
similarity value. The dimensions of a section B are
defined by a bounding rectangle that just encloses a
continuous portion of S. The partial similarity value of a
section estimates the proportion of the tutor’s song that is
accounted for by that section. For a tutor’s song with a
total of n intervals, the partial similarity value of a section
B is.

8. Elimination of redundancy. Sort sections from high
to low values of Ps. Starting from the interval of highest
partial similarity value, clip all overlapping parts of other
intervals (i.e. set those entries in S to zero) and recompute
their partial similarity values according to step 7.

9. The final similarity score is the sum of partial simi-
larities of all sections. In many cases, however, it may be
of benefit to adjust the partial similarity value of a section
so as to give higher values to sections of longer duration.
This is particularly important when examining imitation
of song models of variable duration. For example, such an
adjustment for the Ps values of a section S bounded by a
rectangle of dimensions A�B of the song G (M�N)
could be
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